Mark schemes

Q1.
(a) 1. Hydrogen (bonds);
2. Phosphodiester (bonds);

Accept ester/covalent bond
(b) Correct answer for 2 marks = 1489/1489.2;;

Incorrect answer but for 1 mark accept:
876
OR
1861-1862

Q2.
(a) 4 rows correct $=2$ marks;;

2 or 3 rows correct = 1 mark;
0 or 1 row correct $=0$ marks

Biological molecules	Element			
	Carbon	Nitrogen	Oxygen	Phosphorous
Galactose	\checkmark		\checkmark	
Phospholipid	\checkmark		\checkmark	\checkmark
RNA	\checkmark	\checkmark	\checkmark	\checkmark
Sucrose	\checkmark		\checkmark	

(b) Correct answer for 2 marks, 0.8376308/0.84/0.8 (hours);;

Accept for 1 mark,
Evidence of 4×10^{6} and 3×10^{9} (written in any format, for correct readings from graph)

OR
Evidence of 9.550746785 (correct number of generations)
OR
Evidence of 1.1938443348 (correct generations/ hour)
OR
Evidence of 50.26 (correct generation time in minutes)

Incorrect reading of graph, 3×10^{6} and 2×10^{9}
Accept for 1 mark, calculation carried out correctly
Evidence of 9.380821784 (correct calculation of number of generations)

OR

Evidence of 1.172602723 (correct calculation of generations/ hour)

OR

Evidence of 51.16822503 (correct calculation of generation time in minutes)

OR

Evidence of 0.8528037505 (correct calculation of generation time in hours)
Incorrect reading of graph, $10^{6.4}$ and $10^{9.3}$ OR $10^{6.3}$ and $10^{9.2}$
Accept for 1 mark, calculation carried out correctly
Evidence of 9.633591475 (correct calculation of number of generations)

OR
Evidence of 1.204198934 (correct calculation of generations/ hour)

OR

Evidence of 49.82565445 (correct calculation of generation time in minutes)

OR

Evidence of 0.8304275742 (correct calculation of generation time in hours)

OR

Evidence of 0.83 , with no other working
Accept correct rounding to any number of decimal places
(c) 1. (Model) Q and
(Name) Semi-conservative (replication);

Explanation

2. (Model) P (is unsupported because)

There should be two peaks in generation 1
OR
(Only) one peak is shown in generation 1
OR
There should be 3:1 (ratio) of peaks in generation 2

OR

There should not be an intermediate/ ${ }^{15} \mathrm{~N}{ }^{14} \mathrm{~N}$ peak in generation $1 / 2 / 3$

OR

The original/generation $0 /{ }^{15} \mathrm{~N}$ peak should be in generation $1 / 2 / 3$;
3. (Model) \mathbf{R} (is unsupported because)

There should be >2 peaks in generation $2 / 3$

OR

There should be one wide/overlapping peak in generation 3;
Accept answers 2. and 3. in either order
Accept for 'peak', density OR distribution
Accept for '>2', many OR several

Q3.
(a) 1. Polymer of nucleotides;

Accept 'Polynucleotide’
Accept for 'phosphate'. phosphoric acid
2. Each nucleotide formed from deoxyribose, a phosphate (group) and an organic/nitrogenous base;
3. Phosphodiester bonds (between nucleotides);
4. Double helix/2 strands held by hydrogen bonds;
5. (Hydrogen bonds/pairing) between adenine, thymine and cytosine, guanine;

Q4.
(a) 1. Condensation (reaction)/loss of water;
2. (Between) phosphate and deoxyribose;
3. (Catalysed by) DNA polymerase;

Reject if DNA polymerase joins AT/GC OR
complementary nucleotides/bases OR forms
hydrogen bonds
(b) Correct answer for 2 marks = 70;;

Accept for 1 mark,
$A=42$ and $T=42$

OR
420 (total bases in gene)
OR

210 (bases in template strand)
(c) Histone;
(d) 1. DNA helicase;
2. Breaks hydrogen bonds between base pairs/ AT and GC/complementary bases

OR
Breaks hydrogen bonds between polynucleotide strands;
Reject hydrolysis of hydrogen bonds

Q5.
(a) 1. Joins (adjacent DNA) nucleotides;

Reject suggestions that it forms hydrogen bonds or joins complementary bases.
Reject 'nucleotide bases'.
2. (Catalyses) condensation (reactions);
3. (Catalyses formation of) phosphodiester bonds (between adjacent nucleotides);

Q6.
(a) Watson and Crick

OR
Crick and Watson;
Correct spelling
Ignore first/given/fore names
(b) DNA polymerase;
(c) Role of single-stranded DNA fragments

1. Template;
2. Determines order of nucleotides/bases;

Role of DNA nucleotides

3. Forms complementary pairs / A-T, G-C

OR
Forms complementary (DNA) strand;
Ignore forms complementary bases
Accept sequence/ chain for strand

Q7.
(a) 1. Phosphate, deoxyribose and base correctly labelled;

Accept P in a circle $/ P_{i} / P_{4}{ }^{3-}$ for phosphate.
Do not accept phosphorus for phosphate.
Do not accept only pentose for deoxyribose.
Ignore references to sugar.
Accept a named base, (eg adenine, thymine, guanine, cytosine).
Do not accept uracil or only letters (eg A, T, G or C).

Ignore labelled bonds
2. Correct shapes and bonds in the correct positions (as shown below);

Accept correct shapes with incorrect labels
Accept any orientation of diagram, eg inverted / mirror image
Accept any pentagon for deoxyribose
(b) 1. Weak / easily broken hydrogen bonds between bases allow two strands to separate / unzip;
may appear in the same feature
2. Two strands, so both can act as templates; may appear in the same feature
3. Complementary base pairing allows accurate replication; Allow description of complementary base pairing and accurate replication.
(c) C. 550 seconds;

Q8.
(a) 1. (DNA) helicase causes breaking of hydrogen/H bonds (between DNA strands);

Reject 'helicase hydrolyses hydrogen bonds'.
2. DNA polymerase joins the (DNA) nucleotides;

Reject if suggestion that DNA polymerase joins the complementary nucleotides or forms H bonds.
Reject if joining RNA nucleotides or forming RNA.
3. Forming phosphodiester bonds;
(b) 1. (Treatment \mathbf{D} Antibody binds to cyclin A so) it cannot bind to DNA/enzyme/initiate DNA replication;

For 'bind to enzyme' accept 'activate'.
Idea of 'initiate DNA replication' must be linked to start not just less replication.
For 'enzyme' accept named enzyme.
2. (Treatment E) RNA interferes with mRNA/tRNA/ribosome/polypeptide formation (so cyclin A not made);
3. In Treatment F added cyclin A can bind to DNA/enzyme (to initiate DNA replication)
OR
Treatment \mathbf{F} shows that it is the cyclin A that is being affected in the other treatments
OR
Treatment \mathbf{F} shows that cyclin A allows the enzyme to bind (to DNA)
OR
(Some cells in D or E) can continue with DNA replication because they have a different cyclin A allele
OR
(Some cells in \mathbf{D} or \mathbf{E}) can continue with DNA replication because the antibody/RNA has not bound to all the cyclin A protein/mRNA
OR
(Some cells in E) can continue with DNA replication because they contain previously translated cyclin A;

Context needed for Treatment F but it does not
need to be named.
For 'enzyme' accept named enzyme.

Q9.
(a) 8;

Accept eight
(b) Phosphodiester (bond);

Accept phonetic spellings
(c) 1. DNA helicase - (unwinding DNA and) breaking hydrogen bonds / bonds between chains / bases / strands;
2. DNA polymerase - joins (adjacent) nucleotides OR forms phosphodiester bond / sugar-phosphate backbone;

1. Accept H bonds.
2. Accept hydrolyses for breaks
3. Reject forms hydrogen bonds (between nucleotides / bases)
(d) 1. ATP has ribose and DNA nucleotide has deoxyribose;
4. ATP has 3 phosphate (groups) and DNA nucleotide has 1 phosphate (group);
5. ATP - base always adenine and in DNA nucleotide base can be different / varies;

Both parts of each MP needed
3. Reject Uracil / U
3. Accept C, T or G for different bases

Accept annotated diagram for any of the three marks

Q10.
(a) Deoxyribose.
(b) 1. Thymine 18 (\%);
2. Guanine 32 (\%).
(c) DNA polymerase.
(d) 1. (Figure 1 shows) DNA has antiparallel strands / described;
2. (Figure 1 shows) shape of the nucleotides is different /
nucleotides aligned differently;
3. Enzymes have active sites with specific shape;
4. Only substrates with complementary shape / only the 3' end can bind with active site of enzyme / active site of DNA polymerase.

Q11.
(a) Box around single nucleotide.
(b)

DNA strand	Percentage of each base			
	A	C	\mathbf{G}	T
Strand 1	(16)	34	21	29
Strand 2	29	(21)	(34)	16

2 rows correct $=2$ marks;
1 row correct = 1 mark.
(c) 1. Reference to DNA polymerase;
2. (Which is) specific;
3. Only complementary with / binds to 5 ' end (of strand);

Reject hydrogen bonds / base pairing
4. Shapes of 5^{\prime} end and 3 ' end are different / description of how different.

